## Electronic devices with one-dimensional heterostructures based on single-walled carbon nanotubes

Y. Feng<sup>1</sup>, Y. Zheng<sup>1</sup>, M. Liu<sup>1</sup>, S. Chiashi<sup>1</sup>, K. Otsuka<sup>1</sup>, R. Xiang<sup>1</sup>, and <u>S. Maruyama<sup>1\*</sup></u>

<sup>1</sup> Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan \*E-mail : maruyama@photon.t.u-tokyo.ac.jp

We have realized the synthesis of one-dimensional (1D) van der Waals heterostructures with single-walled carbon nanotube (SWCNT) as a template. A typical 1D heterostructure is composed of SWCNT, boron nitride nanotube (BNNT), and molybdenum disulfide nanotube (MoS<sub>2</sub>NT), coaxially grown by serial chemical vapor deposition (CVD) steps [1]. We can also remove SWCNT from SWCNT@BNNT by gentle oxidation process because BNNT is thermally more stable than SWCNT [2]. By comparing optical properties of BNNT@MoS2NT and SWCNT@BNNT@MoS2NT, we found the strong photoluminescence (PL) from monolayer MoS<sub>2</sub>NT [3] and quenching of PL by SWCNT through thin BNNT [2]. The prominent population of free charges and inter-tube excitons are proved by the ultrafast optical spectroscopy [4,5]. We can realize various hetero-nanotubes in different morphologies such as SWCNT thin film, pillar-suspended SWCNT, chirality separated SWCNT deposited on TEM grid, and bulk SWCNTs grown on zeolite-supported catalysts [6]. Simply with SWCNT@BNNT in a thin film form, the enhanced thermal conductance [7] is very promising for macroscopic applications of heterostructures. In order to fabricate a practical electronic or optoelectronics devices, micro-meter long 1D van der Waals heterostructure SWCNT@BNNT@MoS2NT were prepared between Si pillars. After transferring to SiO<sub>2</sub> substrates and fabricating metal electrodes, we have examined various device characteristics. The naturally p-doped SWCNT and n-type MoS<sub>2</sub>NT becomes a radial semiconductor-insulator-semiconductor (S-I-S) tunneling heterojunction diode [8].

Part of this work was supported by JSPS KAKENHI Grant Number JP20H00220 and by JST, CREST Grant Number JPMJCR20B5, Japan.

## References

- [1] R. Xiang et al., Science 367, 537 (2020).
- [2] M. Liu, K. Hisama, Y. Zheng, M. Maruyama, S. Seo, A. Anisimov, T. Inoue, E. I. Kauppinen, S. Okada, S. Chiashi, R. Xiang, S. Maruyama, ACS Nano 5, 8418-8426 (2021).
- [3] K. Hisama, M. Maruyama, S. Chiashi, S. Maruyama, S. Okada, Jpn. J. Appl. Phys., 60, 065002(2021).
- [4] M. G. Burdanova et al., Nano Lett. 20, 3560 (2020).
- [5] M. G. Burdanova, M. Liu, M. Staniforth, Y. Zheng, R. Xiang, S. Chiashi, A. Anisimov, E. I. Kauppinen, S. Maruyama, J. Lloyd-Hughes, arXiv:2104.09430 [cond-mat.mes-hall] (2021).
- [6] Y. Feng, H. Li, B. Hou, H. Kataura, T. Inoue, S. Chiashi, R. Xiang, S. Maruyama, J. Appl. Phys. 29, 015101 (2021).
- [7] P. Wang, Y. Zheng, T. Inoue, R. Xiang, A. Shawky, M. Watanabe, A. Anisimov, E. I. Kauppinen, S. Chiashi, S. Maruyama, ACS Nano 14, 4298 (2020).
- [8] Y. Feng, H. Li, T. Inoue, S. Chiashi, S. V. Rotkin, R. Xiang, S. Maruyama, ACS Nano 15, 5600-5609 (2021).